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The analytical solution of a boundary-value problem of heat conduction for tribosystem, consisting of the
homogeneous semi-space, sliding uniformly on a surface of the strip deposited on a semi-infinite sub-
strate, is obtained. For materials of frictional systems: steel-aluminum-steel and steel-zirconium diox-
ide-steel, the evolution and distribution on depth from a surface of friction for temperatures and thermal
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1. Introduction

Protective strips such as evaporated coatings and films are used
for improvement of wear-contact characteristics of friction ele-
ments. It is known that addition of aluminum in frictional materi-
als leads to higher and stable values of friction coefficient than for
steel without aluminum. One of the most perspective materials
used in heat-shielding coatings is the zirconium dioxide ZrO,
based ceramics [1].

In the previous investigations authors examined the influence
of the coating’s physical properties on distribution of temperature
and thermal stresses in the substrate. The two versions of state-
ments of the corresponding thermal problems of friction, were
used. In the first one, while calculating the temperatures, the
intensity of the frictional heat flux, which has been directed to each
components of friction pair, was assumed to be proportional to the
specific capacity of friction [2,3]:

q=fVp. (1)

In such statement at V = const. (the uniform sliding), the solution
of a heat conduction problem of friction for the substrate with the
homogeneous or composite strip on its surface, has been obtained
[4-6]. The corresponding problem at V(t)= V(1 — t/ts), 0 <t <t
(braking with constant retardation) has been studied in article
[7,8]. The processes connected with the thermal cracking due to fric-
tional heating on a surface of solid, consisting of semi-infinite sub-
strate and a strip, have been considered in papers [9,10].
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Other variant of statements of heat conduction problems of fric-
tion assumes the simultaneous solution of the equations of heat
conduction and thermoelasticity for each of frictional elements
with the subsequent calculation of heat fluxes intensities [11].
The solution of a transient heat conduction problem of friction
for two semi-spaces in such statement has been obtained in article
[12] and for tribosystem consisting of a strip sliding with constant
speed on a surface of the semi-infinite substrate in article [13].

The statement and methods of the solution of heat conduction
problem of friction are close to such cases when the problems of
heat conduction are connected with mathematical modeling of
the temperature fields in solids caused by the laser irradiation. In
such problems it is supposed that heat flux intensity is uniform
or is described by the linear function of time (the triangular time
shape pulse) [14-16].

The main objective of the present article is to obtain the analyt-
ical solution of a thermal problem of friction for tribosystem con-
sisting of three bodies: the homogeneous semi-space, sliding
uniformly on a surface of the strip deposited on a semi-infinite
substrate.

2. Problem formulation

The problem of contact interaction of two semi-spaces is con-
sidered, where one of them is homogeneous and the other is a
semi-infinite substrate with surface covered by a strip of thick-
ness d. The perfect heat contact between the strip and the sub-
strate takes place. It is supposed, that the constant compressive
pressures pg in direction of z axis of the Cartesian system of coor-
dinates Oxyz are applied to the infinities in semi-spaces (Fig. 1).
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Nomenclature
d thickness of the strip
erf(x) Gauss error function

erfc(x) =1 — erf(x) complementary error function
ierfc(x) = m'2exp(—x?) — xerfc(x) integral of the error function

ts time braking

Vv sliding speed

Vo initial sliding speed
z spatial coordinate

erfc(x)

f frictional coefficient Greek symbols

K coefficient of heat conduction 7 = kit/d?> dimensionless time (Fourier’s number);

k coefficient of thermal diffusivity {=z/d dimensionless coordinate

Po pressure

q=fVpo intensity of the frictional heat flux (the friction power) Indexes

T temperature f bottom semi-space

To = qd/K; temperature scaling factor s strip

T =T/T, dimensionless temperature t upper semi-space

t time
The homogeneous upper semi-space slides with the constant K T K oT¢

) , e : . | K g, t>0, (6)

velocity V in the direction of the y-axis on the strip surface. 0z |, o 0z, .,
Due to friction the heat is generated on a contact plane z=0. It To(—d,t) = T;(~d,t), t>0, (7)
is assumed that sum of the intensities of the frictional heat fluxes oT oT
directed into each component of friction pair is equal with the K— = Kf—f , t>0, (8)
specific friction power. Let us find the distribution of temperature | ar 0| a-
fields and intensities of the heat fluxes in the frictional elements.  T¢(z,t) =0, z— oo, t>0, 9
Further, all values and the parameters concerning a top semi- Tf(z,t) -0, z— —oo, t>0, (10)
space, strip and substrate will have bottom indexes “t”, “s” and Te(z,0) =0, 0<z< oo, (11)
“f", respectively (Fig. 1). ' i

The transient temperature fields T;;/z,t) can be found from the Is(20)=0, -d<z<0, (12)
solution of the following transient heat conduction problem of Tf(2,0) =0, —oo<z<—d. (13)
friction: Let us denote by
?*Ti(z,t) 1 3T(z,1) I K K .k .

2 kot 0<Z<e >0, (2) g:%, r:;izt, 1<;:é, 1<;:i, kf:é, Iq:;:—:, (14)
*Ts(z,t) 1 dTs(z,t d T T T

62(2 ):k: ét ) d<z<0, t>0, (3) TO:% L= T=p. T=f (15)
FTy(z,0) _1 oy (2, t)‘ —co<z<—d, t>0, 4) Taking denotes (14) and (15) into account, the boundary-value

oz? ke ot ' problem of heat conduction (2)-(13) can be written down in the
T,(0,t) =T¢(0,t), t>0, (5) form

| 4

l%LLl

| |

\Yﬂl

TRYWTTT

Fig. 1. Scheme of the problem.
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FTi () 19T,

_ Y%
e ket 0<{<o0, T>0, (16)
"To(T) _AT(LT) .
R -1<{<0, >0, (17)
PTi T Ti(¢,
f% ):l i ), —co<l<-1, T>0, (18)
o ki ot
T(0,7) =T;(0,7), 7>0, (19)
oT; oT;
- K+ =1, >0, (20)
o (=0- ' oc =0+
Ti(-1,0)=Tj(-1,7), ©>0, (21)
o T}

3 >0, 22
oC {=-1+ f oC w—l— ( )
T;((,1) >0, (— o, T>0, (23)
T;((,1) =0, {— —o0, T>0, (24)
T;((,0) =0, 0<{<oo, (25)
T;((,0)=0, -1<(<0, (26)
Ti((,0)=0, —oco<{<~— (27)
2.1. Solution of the problem

We perform the Laplace integral transform [17]

T; (G, / Tiss (¢ )ePrdr. (28)

on the heat conduction Eqgs. (16)-(18) and the boundary conditions
(19)-(24) with the homogeneous initial conditions (25)-(27) for the
temperature. Thus we have

dT;(p) Pmyfr )
T—ETf(QP)fO, 0 <{<oo, (29)
d*T:(¢, -
%—pm,p) —0, 1<(<0, (30)
&Ti(p) p

&P P =, _ B .

dé,z I; f(é/ p) 07 00 < (< 17 (31)
T;(0,p) = T;(0,p), (32)
dT;(¢.p) .dT;(¢,p) 1

-K; =, (33)

dC C:O— dt" =0+ b

T:(-1,p) = T;(-1,p), (34)

dT;({,p) LdT;({,p)

ac | _ . b . %)
T;((,p) =0, (— o, (36)

The general solutions of the ordinary differential Eqs. (29)-(31)
have the form:

T;((,p) = Ce(p) exp (c 1*)

+ Dy(p) exp <g lf) 0<¢< oo, (38)
T:((,p) = Cs(p)sh(¢v/P) + Ds(p)ch(¢y/p),

TH(C.p) = Cy(p) exp (c ,f)
f

“1<¢<0, (39)

+ Dy(p) exp (¢ ,’j) o0 << -1, (40)
f

where Csrand D rare unknown functions of Laplace transforma-
tion parameter p. Satisfying the boundary condition (32) and the
conditions of regularities (36) and (37) we find D{p)=Ds
(p), Cdp)=Dfp)=0. Satisfying the remained boundary conditions
(33)-(35), we obtain the Laplace transforms of temperatures in
the following form:

Ti(p) = [sfSh(ﬁﬁX(;’;Wﬁ” exp (z 5) 0<i<oo  (41)
= _gsh((1+0vp] +ch[1+0)vP]
_— 1 . p

F(6p) = o —is 1+0), 5], —o<i<-1, 43
&P =5 mag &P |10 kf] < (43)
where
A(p) = (1 + &ep)sh(y/p) + (e + & )ch(v/p (44)

_ K K [k K;  Kr
g=—L - 45
Jk K\ ke \/* K, k (45)

The dimensionless quantities 0 < &y < co (45) are known under
the name “coefficient of thermal activity” [18], where &, charac-
terizes thermal activity of the material of the top semi-space rel-
ative to the material of the strip, and & - of the substrate to the

strip.
We have introduced the notations
1—¢ 1—¢
A= = . 46
t 1+¢ N 1+ & ( )

It is obvious that —1 < 4;y< 1 and if materials of all elements are
the same, then ;= /;=0. Taking into account relations (45) and
(46) the denominator (44) can now written as

Alp) = %(1 + &) (1 + &) exp(vp)[1 — Lexp(=2v/D)], (47)

where ). = 7,/ Representing the function [1 — 2exp(~2.,/p)]"' by the

geometric series

1 o0
- =Y A"exp(-2np), 48
T Texp(—27P) n; p(—2nyp) (48)
where
e <A<,
= { T (49)
(=D)"A", -1<i<0,

from Eq. (47) we obtain

1 2exp( n
ok WZA exp(—-2ny/p). (50)

Introducing the expression (50) into solutions (41)-(43) we find
the transforms of the temperature

T:(,p)= 1+z[ ZA"{exp{ <2n+\/;’ul?>\/ﬁ}
+rexp [7<2n+2+ﬁ>\/ﬁ}}, 0< (<00, (51)

84 n
TGP = m[prA {expl-(2n-0) v

+irexp[—(2n+2+0)vh}, —1<(<0, (52)

o , ) (1+0)
Tf(g,p)fwz/l exp{{2n+l \/’—1\/13}7

—co<i<~1. (53)
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The transforms (51)-(54) are inverted by the inversion formula
[19]

~1[exp(—vap) | _ : 1 Ja
L { P ,t]Zx/flerfc(z\/;), a>o0, (54)
where
exp(—x*)
ierfc(x) = —Jr xerfc(x). (55)

As a result we find the temperatures in the closed form:

T (L) 2f ZA" , 0<{<00, 720, (56)
. ¢ 1
T;, =ierfc ) L
- m
+Afierfc< ) } n=0,1,2... (57)
Lt H&Z 1<(<0,7>0, (58)
e (200 24240\
Tsin(g7r)_1erfc<2\/_)+ flerfc< N >7 n=0,1,2..., (59)

o

T;((1)= 1+s[ 1+sf 2; "T;,(L,T), —o0<(<-1,720, (60)
T () —ierfe| | 2n+1-158 | 1| n01,2 (61)
fin\Gs k; 27T ’ sy Laooon

Let us define the intensity of the heat fluxes in the top semi-
space, the strip and in the substrate as:

0.zt = K, aT’g D 0<z<oot>0 (62)
qs(z,t)zksw7 -1<z<0,t >0, (63)

or, taking denotes (14) and (15) into account, their dimensionless
values:

gen=220_ TEY o< 0. (63)
(LT = qs(? b_ aT;a(E, Y 1<c<0 130, (66)
S
ot oT; (¢, T
q;(.7) _ 4z ):K; féZ ) <i<-1ts0. (67)

Taking into account that d[ierfc(x)]/dx = —erfc(x), after differen-
tiating the dimensionless temperatures (56)-(61) with respect to {
from the relations (65)-(67) we obtain:

00

& * v
N m Z/l”q[.n(‘:,l-),

n=0

()t

0<{<oo,

q:(5,7) T=0, (68)

q;,(,7) =erfc

{ 1
Jrerfc —1|, n=0,1,2,..., (69
o ( \/E>2 T} )
q;(cvr)—(lm);mm(m -1<(<0, >0, (70)
e e 2n—¢ 2n+2+¢ _
qsn(gn:)_erfc< 2\/?) }ferfc<72\/f >7 n=0,1,2...(71)

28f

GO ) 2

Z "G a(0T), —oo<{<~1, 120, (72)

+9) 1| 012, (73)

i )27

2.2. Some particular solutions of the problem

g (¢ T)=erfc| | 2n+1-

The maximal temperature is reached on a plane of friction { =0
and as follows from the formulae (56)-(59), is equal:

* = T* * . n * >
T'(1) =T;(0,7) = T;(0,7) = o) HZ;AT >0, (74
T;(7) = T;,(0,7) = T;, (0, 7) = ferfc <%>
, n+1
+2f1erfc<7>, n=0,1,2..., (75)

The corresponding dimensionless intensities of heat fluxes on a
surface { =0 it are found from formulae (68)-(71) as:

q; (0, Ht ; "q;,(0,7), T>0, (76)
. _ n n+1 _

q;,(0,7) = erfc (ﬁ) + Jrerfc <—\/f >, n=0,1,2..., (77)

q:(0,7) q;,0,7), =0, (78)
* (0,7) = erfc (-) ) erfc<i> n=01,2 (79)

qs,n 3 = ﬁ of \/% 3 = L4....

From the relations (76)-(79) it follows that

[(pt+l)erfc( )+}f( )erfc(%)] =
= ni;A” [erfc (%) - ).fi.rerfc (%)] = ,,i; [A”erfc( n ) — A" erfc %)} -
=erfc(0)=1,

2:(0,7)+4;(0,7) =

(80)

i.e. the boundary condition (20) is satisfied.

In the case of identical physical properties of a strip and sub-
strate (K, = Kj, ks = ky) from formulae (14), (45) and (46) it follows
that K; =1,k =1,=1,4=0,4=0. The Egs. (56)-(61),
(68)—(73) at n = 0 give the solution of the thermal problem of fric-
tion for two homogeneous semi-spaces [20]:

% (o _ Zﬁ

T[(g,r)f(lﬂt 1erfc<2\/_> 0<{<o0, T=0, (81)
" 2VT )

T;(C.7) :ﬁlerfc(fﬁ), —00< (<0, T=0, (82)

GCD =51 (<00, 120, (83)

f 0<
erc(zw—)
cip 7y 1 "

At identical material properties of the top semi-space and strips
(K¢ = K, k¢ = ks) from the formulae (14), (45) and (46) it follows that
K;=1,k;=1,&,=1,4 =0,4 =0 and we obtain

T; f{lerfc<2\/_>+/Lf1erfc(2\/_>}, 0<{<o0,T=0, (85)
T!((T)= f{lerfc(z\/.>+/uflerfc(zj;é>} ~1<¢<0,7>0,(86)
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1+(] 1
ke 2V

T}(é,r)(lzT\/ff)ierf{ 1- , —oo<({<-1,7>0, (87)

q; (¢,7) :% {erfc (%) +iferfc<;—\+/§>_ , 0<{<00, 720, (88)
iy 1 —{ 2+0\] .
‘o & 1+ 1 .

T) = erfc| | 1— —|, —co<{<-1,7>0.90
q;(¢,7) T+ \/kj N oo <{ (90)

In the case of identical physical properties of the top semi-space
and substrate (K;=Kf=K, k. = k= k), the dimensionless tempera-
tures and heat fluxes it is calculated under formulae (56)-(61),
(68)-(73), believing in them & =¢&= ¢ A =A=4, A=72 where,
taking the notations (14), (45) and (46) into account,
K k K 1-¢
K =— g =—, A= .
R Ayt T+e

If the materials of all elements are identical (K;=K;=Kj

ke = ks = kf) then in the Egs. (81)-(84) it is necessary to put addi-
tively k; = 1,6 =1 and k; = 1,4 = 1, 4; = 0 in the Eqs. (85)-(90).

91)

2.3. Numerical analysis

The input parameters of a problem are the spatial coordinate z,
the time ¢, the ratios of heat conduction K;;rand diffusivity k. the
thickness of the strip d, the coefficient of friction f, the sliding speed
V and pressure po. All calculations for temperatures and heat fluxes
were executed for fixed values f=0.3,V=5ms"}, po=1 MPa in the

260 —
T[°C] -

220

200

180

160

140

120

100

80

60 —

40

20
0.01 1 2 3

case, when the properties of materials top and bottom of semi-
space are identical(K; = K=K, k= k= k) and made of St 40H steel:
K=419W(mk)!, k=12 x 10°>m?s~'. The strip materials are
aluminum Al: K;=209W (mk)™!, k,=8.6 x 10> m?s~! or zirco-
nium dioxide ZrO,: K=2 W (mk)™}, k = 0.08 x 107> m? s~ The ini-
tial temperature equals Ty =20 °C. The solid curves in all figures
correspond to results of calculations for the aluminum strip, the
dashed curves correspond to the zirconium dioxide strip.

The evolution of temperatures on the contact surface (z=0) and
on the interface between the strip and substrate (z = —d), is shown
in Fig. 2. It is observed that for fixed values of strip thickness
(d =300 pm), the temperature on friction surface for steel semi-
space-ceramic strip tribosystem is significantly higher than con-
tact temperature for steel semi-space-aluminum strip tribosystem
during whole period of sliding. For the same strip thickness the
opposite effect is observed on the interface z=—d - the tempera-
ture during friction between steel and aluminum strip is higher,
than in case of the ceramic strip.

The temperature distribution in the elements of tribosystem on
depth |z| from a plane of friction z = 0 is shown in Fig. 3. The max-
imal temperature is reached on a surface of friction and in case of
the zirconium dioxide strip equals T =148 °C whereas for the alu-
minum strip reaches T=110°C. In aluminium strip the tempera-
ture is nearly constant on the whole depth, whereas in ceramic
one decreases linearly with distance from the friction surface.
The temperature in the steel substrate reaches significant values
only in case of the aluminium strip. Some other character has tem-
perature distribution on depth in the top semi-space. In case of the
ceramics strip the temperature in the top semi-space is always
higher than temperature in the case of aluminum based strip. In
substrate and in the top semi-space both, temperature reaches

7 t[s] 8

4 5 6

Fig. 2. Evolution of the temperature T for St-Al-St (solid curves) and St-ZrO,-St (dashed curves) tribosystems for two values of the distance |z| from surface of friction at the

strip thickness d =300 pm.
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Fig. 3. Dependence of the temperature T for St-Al-St (solid curves) and St-ZrO,-St (dashed curves) tribosystems on the distance |z| from surface of friction for values of time

t=2s and the strip thickness d = 300 pm.

its initial value To = 20 °C at the depth of 15 mm, which correspond
to 50 strips of d =300 um thickness.

180
TP S

160 —

140

120 +

100

20 =

For fixed time moment t = 2 s, thickness of ceramic strip should
be equal 5 mm in order to achieve temperatures range in nonlinear

L [ [ J |
2 1 |z| [mm] g

Fig. 4. Distribution of the temperature T in the aluminum (solid line) and zirconium dioxide (dashed curve) for values of time t =2 s and the strip thickness d = 5 mm.
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150
140
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d [um] 30

Fig. 5. Dependence of the contact temperature T on the strip thickness d for St-Al-St (solid curve) and St-ZrO,-St (dashed curve) at time moment t=2s.

decrease from maximal value of T = 175 °C on friction surface z=0
to the initial value of Ty =20 °C on interface surfaces z= —d, see
Fig. 4.

At the same time, the adequate decreasing of temperature in
aluminum strip is insignificant and has linear character. This differ-
ence between both cases for temperature is caused by the fact that
heat is conducted deeper in strip made of material with higher
thermal diffusivity coefficient such as aluminium.

Dependence of temperature on a surface of friction z = 0 from the
strip thickness d for the fixed time moment t = 2 s is shown in Fig. 5.
At d = 0 we have the solution of the problem in the case of identical
physical properties of a semi-space, strip and substrate (the formu-
lae (81)-(84) at & =1,k; =1). For defined in the beginning
parameters, the final temperature equals T= 112 °C. Aluminum
has higher thermal diffusivity coefficient than steel. Therefore, with
the increase of strip thickness, better heat-conducting materials
such as aluminum will replace worse heat-conducting materials
(steel) in order to cause decrease of temperature on the friction sur-
face. It can be observed in Fig. 5 that increasing of aluminum strip
thickness causes in beginning the decrease of temperature on the
friction surface, to become afterwards from thickness qual
d = 20 pm, on the constant level T =~ 85 °C. The temperature evolu-
tion for ceramic strip ZrO,, is observed on the contrary way. As ZrO,
dioxide is worse heat-conducting materials than steel, so its thermal
resistance is much higher [21]. As a result, with increase of strip
thickness the temperature on the friction surface increases, too. It
is shown in Fig. 5 that increase of strip thickness causes immediately
increase of temperature from T=112°C for d=0 to T=175 °C for
d =~ 2 pm. Subsequent increase of strip thickness does not change
the maximal temperature.

Dimensionless heat fluxes intensities directed to each elements
of tribosystem are defined by formulas (62)-(64) in the form of

adequate heat flux intensities and constant value of friction power
q = fVpg ratio. That is why, the numerical analysis was carried out
only for dimensionless heat fluxes.

The evolution of the dimensionless heat fluxes intensities direc-
ted in the top semi-space (q;, { > 0) and in the strip (q;,
—1 < ¢ <0)is shown in Fig. 6. It can be noticed that the aluminum
strip absorbs more heat than others (Fig. 6a) and that ceramic one
absorbs much less heat (Fig. 6b) than steel top semi-space. The
maximal dimensionless heat fluxes intensity q;, takes place on a
plane of friction { =0 and decreases with the distance from it. On
the contrary to the temperature, the heat fluxes intensity increases
in time and reaches the steady state. The quickest stationary state
is reached on a plane of friction { = 0. It is clearly shown that the
sum of dimensionless heat fluxes intensities on this plane, directed
in the top semi-space and a strip, always equals one, thus the
boundary condition (20) is satisfied.

3. Conclusions

The analytical solution of a heat conduction problem of friction
for tribosystem, consisting of semi-space, sliding with constant
speed on a surface of the strip deposited on the substrate, was ob-
tained. Distribution of temperatures and heat fluxes intensities in
elements of friction pair: steel-aluminum-steel and steel-zirco-
nium dioxide-steel, was investigated. It was found, that the maxi-
mal temperature takes place on a surface of friction. During whole
period of sliding, the contact temperature of the ceramics strip is
significantly higher than temperature of a aluminum based strip.
The temperature in the steel top semi-space decreases with dis-
tance from a surface of friction much quicker in case of a strip from
zirconium dioxide, than in the case of aluminum strip. The steel sub-
strate heats up to a significant level only in case of the ceramics
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Fig. 6. Evolution of the dimensionless heat fluxes q': (a) for St-Al-St tribosystem (solid curves) and (b) for St-Zr0O,-St tribosystem (dashed curves) for several values of the
dimensionless distance ¢ from surface of friction.

strip. The maximal heat fluxes intensity takes place on a plane of frictional heating and wear on the temperature distribution in
friction and decreases with the distance from it. two sliding semi-spaces has been investigated in article [12].

We note that the increase of temperature on a surface of For the tribosystem being in this paper under study, the same
friction causes rapid wear [22,23]. Simultaneous influence of problem will be researched in the nearly future.
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